Computer Science in Mechanical Engineering II: Data Science and Machine Learning

 

This is an advanced course intended for master students in mechanical engineering who are interested in machine learning and data science.

Course Description

The class Computer Science in Mechanical Engineering II covers state-of-the-art data science methods, and how to apply them to problems relevant to mechanical engineering. The course will cover the theoretical basics in probability theory, then move to methods of state estimation and machine learning. The class emphasizes both solid theoretical understanding of the algorithms, as well as hands-on programming exercises to apply them to problems in the context of engineering.

 

Facts

  • Cycle: Winter semester
  • Assessment: Written Exam, 120 minutes
  • Credits: 5 CP
  • Language: English
 
 

Class Outine

  • Introduction to probability theory
  • Bayes principle
  • Bayesian parameter and state estimation
  • Machine learning basics: regression and classification
  • Gaussian processes
  • Neural networks
  • Reinforcement learning

Lectures and Exercises

The course is given as L2/E2 during the winter term and is held in English. For information on lectures and exercises check with RWTHonline. Course materials for the lectures and the exercises can be downloaded from the RWTHmoodle platform.

Consultation Hours

Consultation hours are offered on appointment