Abgeschlossene und laufende Abschlussarbeiten
Abschlussarbeiten am DSME
Titel | Art | Jahr | Name | Betreuer*in |
---|---|---|---|---|
Achieving Compliant Motion Control for Continuous-Contact Task with Reinforcement Learning | Masterarbeit | 2023 | Aditya Pradhan | Emma Cramer |
Data Transfer in Robust Direct Data-Driven Control | Masterarbeit | 2023 | Dmitrii Likhachev | Alexander von Rohr |
High-dimensional Convex Bayesian Optimization for Controller Tuning | Bachelorarbeit | 2023 | Felix Kappel | Paul Brunzema |
Neural Processes for Event-Triggered Learning and Control | Masterarbeit | 2023 | Paul Kruse | Paul Brunzema |
Unsupervised State Representation Learning from Video for Reinforcement Learning Applications | Masterarbeit | 2023 | Jonas Reiher | Emma Cramer |
Safe Bayesian optimization of quadrocopters in time-varying environments | Masterarbeit | 2023 | Antonia Holzapfel | Paul Brunzema |
Safe Bayesian optimization for learning automotive tracking control | Masterarbeit | 2022 | Johanna Menn | Sebastian Trimpe |
Utilization of model uncertainty for the algorithmic optimization of model-based deep reinforcement learning approaches | Bachelorarbeit | 2022 | Artur Eisele | Bernd Frauenknecht |
Balancing a Two Degrees of Freedom Inverted Pendulum with a Robotic Arm | Bachelorarbeit | 2022 | Kyrylo Sovailo | Alexander von Rohr & Shiming He |
Detection and Isolation of Anomalies in Process Data Through Observer | Bachelorarbeit | 2022 | Fabian Feucht | Paul Brunzema |
Cooperative Behaviors in Sequential Social Dilemmas using Multi-agent Reinforcement Learning | Masterarbeit | 2022 | Julia Freytag | Dominik Baumann |
Kernel-based machine learning methods and modern robust model predictive control | Masterarbeit | 2022 | Victoria Hankemeier | Christian Fiedler |
Learning the stage cost in model predictive control | Masterarbeit | 2022 | Kenneth Goveas | Christian Fiedler |
Learning and Forgetting in Time-Varying Bayesian Optimization | Masterarbeit | 2021 | Paul Brunzema | Alexander von Rohr |
Learning Policies on a Rotatory Pendulum Using Gradient Descent Based Bayesian Optimization | Bachelorarbeit | 2021 | Reis Baltaoğlu | Alexander von Rohr |
Globally Optimal Safe Robot Learning in Higher Dimensions | Masterarbeit | 2021 | Bhavya Sukhija | Dominik Baumann mit Matteo Turchetta and David Lindner (beide ETH Zurich) |
Toward Safety Guarantees for Deep Neural Network Controllers: Stability Analysis of Reinforcement Learning Policies | Masterarbeit | 2021 | Hannah Markgraf | Emma Pabich und Dominik Baumann |
Learning the stage cost function for model predictive control without terminal conditions | Praktikum | 2021 | Kenneth Goveas | Christian Fiedler |
Abschlussarbeiten mit externen Partnern
Titel |
Art |
Jahr | Name | Externer Partner | DSME Betreuer |
---|---|---|---|---|---|
Analysis of Observation Spaces for Reinforcement Learning in Robotic Manipulation | Masterarbeit | 2023 | Kartik Sachdev | Siemens AG | Emma Cramer |
Data-Driven Process Optimization for Injection Molding | Masterarbeit | 2023 | Christian Fiedler | Institut für Kunststoffverarbeitung, RWTH Aachen | Alexander von Rohr |
Benchmarking Learning-Based Control and Reinforcement Learning | Masterarbeit | 2023 | Tsung Yuan Tseng | TU München | Alexander von Rohr |
Learning-based approximate model predictive control | Masterarbeit | 2022 | Abdullah Tokmak | ETH Zürich | Christian Fiedler |
Curriculum Adversarial Reinforcement Learning | Masterarbeit | 2022 | Maximilian Tölle |
Intelligent Autonomous Systems Group, TU Darmstadt |
Bernd Frauenknecht |
Physics-informed neural network regression of a robot arm's inverse dynamics | Masterarbeit | 2022 | Josefine Monnet | Werkzeugmaschinenlabor WZL der RWTH Aachen |
Andreas René Geist |
Multi-Task Active Learning for Computer Vision | Masterarbeit | 2022 | Nik Dorndorf | École Polytechnique Fédérale de Lausanne | Alexander von Rohr |
Deep Learning for Nonlinear Observer Design | Masterarbeit | 2022 | Lukas Bahr | MINES ParisTech | Pierre-François Massiani |
Data Science in press shop - Using machine learning algorithms to predict downtime | Masterarbeit | 2022 | Tom Jericho | Volkswagen AG | Dominik Baumann |
Towards Industrial Reinforcement Learning: Adapting Modular GPS to Industrial Applications | Masterarbeit | 2022 | Robin Kupper | AZO GmbH Osterburken | Friedrich Solowjow |
An approach to instance segmentation and pose estimation for automated dismantling of lithium-ion batteries for high-quality recycling | Masterarbeit | 2022 | Anna-Maria Meer | Institute for Business Cybernetics and Knowledge-Based Systems Group, RWTH Aachen University | Alexander von Rohr |
Learning Dynamics Equations of a Novel Rotational Pendulum | Bachelorarbeit | 2021 | Yannick Streicher | Universität Tübingen, Max Planck Institute for Intelligent Systems | Dominik Baumann |
Sim-to-Real Transfer of Deep Reinforcement Learning Agents in Gearshift Optimization of Automatic Transmissions | Masterarbeit | 2021 | Bernd Frauenknecht | Mercedes-Benz AG | Sebastian Trimpe |
Event Localization with Deep-Learning-based Time Series Classification for Process Monitoring in Robotics | Bachelorarbeit | 2021 | Jonas Reiher | KUKA Deutschland GmbH | Alexander von Rohr |
Data-enabled Predictive Control of Robotic Systems | Masterarbeit | 2021 | Felix Wegner | ETH Zürich | Sebastian Trimpe |
Reinforcement Learning for Wendelstein 7-X Divertor heat load control | Masterarbeit | 2021 | Timo Thun | Max Planck Institute for Plasma Physics | Sebastian Trimpe |
Data-driven State Estimator for Quadrupedal Robot ANYmal | Masterarbeit | 2021 | Qingxu Zhu | ETH Zürich | Sebastian Trimpe |